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I. INTRODUCTION

In previous works '2 the authors have described a sequential estimator

(called the J-Adaptive estimator) which tracks the state of a dynamical system

with a simplified system model by simultaneously tracking a forcing term which

approximates the unmodeled system dynamics. This estimator has been very

successfully simulated in satellite orbit determination problems , where the

unmodeled system dynamics result from unmodeled earth oblateness accelerations.

The J-Adaptive estimator requires, however, the specification of a statistical

model for the unmodeled system dynamics.

The present study extends the J-Adaptive Estimator to include the simultan-

eous estimation of the statistics of the unmodeled system accelerations, thus

completely automating the estimation process. Simulations in satellite orbit

determination demonstrate the effectiveness of the resulting estimator.

The report is organized as follows. Section II reviews the J-Adaptive

estimation concepts previously reported in detail. The algorithm for estimating

the unmodeled acceleration noise statistics is presented in Section III, which

also gives the full estimator equations. Section IV presents the simulation

results in detail. Finally, Section VII presents the conclusions of this study

and recommendations for further work.
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II. THE J-ADAPTIVE ESTIMATOR

The basic concepts behind the J-Adaptive estimator have been reported

previously.1,2 In essence, the real dynamical system

R = f(R,R), (1)

where R is' the satellite position vector (A = V), is modeled in the estima-

tor as

R = f (R,k) + S(t)u, (2)

so that S(t)u approximates

f(R,R) - fm(R,R), (3)

which is the modeling error made in the estimator dynamics. S(t) is a

specified "symmetry" matrix (not contained in the work reported in Ref [1]),

and u is the unmodeled acceleration vector.

The J-Adaptive estimator sequentially tracks the state R,V and the

unmodeled acceleration vector u from tracking (or other) data. In the

estimator, the unmodeled acceleration u is modeled statistically as a random

polynomial in time (see Ref [1] and Section III). The equations for the basic

J-Adaptive estimator are given in Eqs (24-29) of Ref [1]. The inclusion of the

symmetry matrix S modifies the prediction equation for the state estimate x

(first of Eqs (24)of Ref [1]), and the definitions of the , Qd and. dd
matrices of Eqs (14) of Ref [11, which now become

(i+l,i) = , # d(i+1,i) L 1 dd(i+,i) = J (4)

T S T2 S *dd T3i (4)
S

PREDING PAGE BLANK NOT F11,E
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III. ESTIMATION OF NOISE STATISTICS

The statistical model taken for the random (unmodeled) acceleration vector

u -in Ref [i] is of the form

u(k+l) = u(k) + a(k)T, T = tk+1 - tk ,  (5)

where

a(k+l) = i(k) (6)

and the covariance matrix of i is specified a' priori to be some (diagonal)

matrix U.. which is not allowed to decrease as a result of the estimation
uu

process (as in a "consider" filter mode). On the other hand, u and ii are

estimated (unlike the "consider" filter mode). This is the basic J-Adaptive

filter.

Specification of U in the above filter requires some engineering judge-

ment and experimentation in a given problem, and has been found to be informa-

tion rate dependent. It is clearly desirable to automate the process of selection

of- U by making it data dependent, or adaptive. Such adaptive estimation of

U (or some other statistic in a random model for the acceleration u) is the

subject of the present report.

The basic approach taken to the estimation of the statistics of the

acceleration u is the adaptive filtering approach of Refs [3,4]. In essence,

at each measurement time k, that value of the statistic is selected which

produces the most likely average measurement residual. This adaptive process

for the selection of the statistics of u will be made explicit below within

the context of the J-Adaptive filter.

The statistical model ultimately selected for u is given by

u(k+l) = u(k) + Tw(k) (7)

where {w(k)}. is a 3-vector, zero-mean, white Gaussian sequence with identically

distributed components and covariance matrix

EPREDNG PAGE BLANK NOT M
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E{w(k)wT (Z)}= q(k)I 6k' (8)

where q(k) is to be estimated from the measurements. The model for u given

in Eqs (5-6) was abandoned in favor of the model given in Eqn (7) for the

following reasons. The filter with the model in Eqs (5-6) contains correlation

matrices C. (correlation between the state and i) and U . (correlation
U. uu

between u and i). These correlation matrices force the state covariance matrix
P and the u covariance matrix U . C. and U . are in turn forced by

uu u uu

U... When U.. fluctuates randomly, as it does when it is estimated from the
uu uu

measurements, it introduces numerical inaccuracies in the correlations C. and

U . These in turn cause ill-conditioning of P and U , sometimes to the
uu uu

point of loss of positive definiteness.

The complete.dynamical model selected is therefore given by

x(k+l) = #m(x(k), Su(t)), u(t) = u(k) + (t-tk)w(k)
(9)

u(k+l) = u(k) + Tw(k)

where x is the state vector (R,V) and 4m is the mapping defined by Eqn (2).

The measurement model is given by

Yi(k) = hi(x(k)) + v.(k), i = 1,N (10)

where y. are the scalar measurements available at time k, and {vi(k)}

are independent, scalar, zero-mean,' white Gaussian noise sequences with

C{vi(k)v.(T) } = Rii(k) 6kz. (11)
1 1 i ki

The measurement model is written in vector-form as

y(k) = h(x(k)) + v(k) , (12)

where

= *.. y, hT. .h, R = diag (R). (13)

6



Now define the sensitivity matrices

Dx(k+1) m
L kx(k) J x(k)

T

T(k+l,k) = Dx(k+) - S (14)

r(k+1,k) = = (k ) _ 2 :
M(k) =  . = ah(x(k))

MN(k ) = (k)

and the covariance and correlation matrices

P(kk) = e{[x(k) - k(kjI)] [x(k) - xc(kjl)J T }

Cu(k)' = c{[x(k) - x(kjZ)] [u(k) - u(kI )-[T }  (15)

U(kla) = {[u(k) - u(kjt)] [u(k) - u(k j)]T}

where P(k j) is the state estimation error covariance matrix (covariance of

errors in x(kl)) at time tk, given all measurement up to and including

time t. .Cu and U have similar meaning. Then the usual extended Kalman

filter4 with variance q(k) known and specified is given below.

Prediction (in time) is given by

x(k+1lk) = (~ ( ( k k), S~(tjk))
(16)

u(k+l1k) = u(kik)

.7



P'(k+lk) = DP(kk) T + DC (klk)T + TCT(kk)cT + U(klk)T T

P(k+llk) = P'(k+llk) + q(k)P T (
(17)

C u(k+llk) = QCu(klk) + TU(klk) + q(k)Tr

U(k+llk) = U(klk) + q(k)T21

where the argument (k+l,k) has been omitted from the matrices 4, T and F.

The (measurement) update is given by

x(kk) = x(kk-1) + Kx(k) [y(k) - h(x(kk-1))] (18)(18)
u(kjk) = u(klk-l) + K (k) [y(k) - h(x(k k-l))]

P(klk) = P(klk-1) - Kx(k)M(k)P(klk-1)

Cu(klk) = Cu(klk-1) - Kx(k)M(k)Cu(klk-1) (19)

U(klk) = U(klk-1) - Ku(k)M(k)Cu(klk-1)

where

K (k)= P(klk-1)M T (k)Y l(k)
(20)

K (k) = CT (klk-l)MT(k)Y-(k)

and where

Y(k) = M(k)P(klk-1)M T(k) + R(k) (21)

8



Now the variance q(k) will be estimated via the techniques of Refs [3, 4].

To that end, define the average normalized predicted residual at time k+l,

N EIyQ(k+I) - h:(k(k+1 k))
rk+l (22)

k=1 R (k+1)

It is easy to compute

{r +l} = {r+llIq(k)-O} + dq(k) (23)

where

N N M (k+l)P"(k+llk)MT(k+1)

:{r2 +lq(k)-O } = + 1 k (k+(24)
k+ N N2 91 m=1 R (k+1) R (k+l)

T T mm

N N M (k+)rr TMT(k+l)
d = X m (25)

N2 k=1 m=l R2 (k+1) R (k+l)
Rt m

Then the most probable q(k) based on rk+l is given by 3,4

1 -2 -2
q(k) - C{ r+ lq(k)=E}, if positive

d k+1 k+1
q(k) = . (26)

0 , otherwise

with a = i.

The estimate q(k) of q(k) utilized is an exponentially age-weighted

average of q(k) generated from

ck = ackl + 1, C-1 = 0, a < 1,

(27)

j (k) -k j(k-l) + - q(k), (-1) 0
ck ck.

9



The. q(k) from Eqs (27) is used for q(k) in the filter equations (17).

To complete the estimator equations, the symmetry matrix S in Eqs (14)

and (16) must be specified. A matrix S used with success is given by

=--x(kkk) 0 0

S(k) = kl
JR(kjk)j 0 -(k k) 0 (28)

0 0 -z(klk)

This points the acceleration vector u at the center of the earth.

10



IV. DETAILS OF SIMULATIONS

The simulations presented in the next section feature a circular, polar

orbit of approximately 1000 km altitude. The "real" system force model consists

of the two-body model, plus the earth oblateness model given in Appendix A,

plus a mascon (mass concentration) buried at a depth of 100 km. The mascon

acceleration is represented as

AR = - m3 + m3 (29)

m IR - R I 1R J

where k is of course the satellite position vector, R is the mascon3 m -8
position vector, and M = 0.02 km /sec2  [so that = 5x10 -8, where

m m
is the gravitational parameter of the earth]. In summary, the real system is.

represented by

R = -1+ AR + AR (30)
3 o mr

To complete the specification of the system constants (see Appendix A), the

rotation rate of the earth and the eccentricity of the earth are, respectively,

-5
w = 7.2921159x10 - 5 rad/sec, e = 0.081813336 . (31)

Tracking (range and range rate) is simulated from several tracking stations

to give continuous,and often overlapping, station coverage, sampled every 5 sec.

Tracking begins at the north pole and usually continues for 50 minutes, which

is slightly less than one-half the orbital period. The error models for range

and range rate measurements are simplified, consisting only of additive white

Gaussian noise. Measurement noise standard deviations vary, and are specified

for each simulation.

Estimator dynamical models are variously two-body, and two-body plus

approximate J2 and J3 oblateness accelerations. Precise estimator models

used are specified in each simulation.

11



V. SIMULATION RESULTS

The first set of simulations to be described feature the J-Adaptive esti-

mator with estimated noise variance q (J-A-q estimator) with a two-body

dynamical model. The J-A-q estimator is also compared with the J-Adaptive

estimator with engineered a priori statistic U.. (J-A-U estimator), also
uu

with a two-body dynamical model. Note that, with a two-body model, closed form

prediction.equations are available, and no numerical integration is required.

Figures 1-7 show the performance of the J-A-q estimator with a two-body

dynamical model, when the measurement noise standard deviations for range and

range rate are o = 3m, a. = 1 cm/sec, respectively. As indicated in Section
P p

IV, continuous' and often overlapping tracking station coverage is available.

Figures 1-3 show the tracking of the unmodeled acceleration. The solid lines

represent the actual unmodeled acceleration (oblateness and mascon), while the

dots are the estimates Su. The z-component of the unmodeled acceleration

dominates, being of the order of 10- 5 (initally 10 ) km/sec2 , and is there-

fore tracked most precisely. The x and y acceleration component estimates

are more noisy, but are clearly tracked. Note that there is an initial transient

lasting about 300 sec or so before the J-A-4 estimator locks onto the unmodeled

acceleration. Figures 4 and 5 show the normalized measurement residuals (nor-

malized by-their noise standard deviations) for range and range rate. The

initial transient described above exhibits itself in the range rate residuals,

producing initially, rather large residuals. This transient dies out, however,

and the measurement residuals then appear quite white and are within the

measurement noise level. The absence of residuals after about 2000 sec of

tracking is merely a programming problem in the computer-generated plots; the

residuals continue to exhibit appropriate statistical properties for the balance

of 1000 sec. Figures 6 and 7 show the actual state estimation errors in

position and velocity; namely JR-RI and JV- . It is seen that after an

initial transient the state estimation errors are quite comparable with the

measurement noise. That-is, position is estimated to about 3m and velocity to

about 1-5 cm/sec.

Let us discuss the initial ~ 300 sec transient which is observed in

Figures 1-7. This transient is, in part, due to the transient in u ; that is,

13 k =ING PAGE BLANK NOT FIIJED



the state cannot be estimated precisely until the unmodeled acceleration is.

This is not the whole story, however, Note that the range rate normalized

residuals, while sometimes as large as 50 initially, are random and cannot

explain the large initial state estimation errors, particularly in velocity.

It is noted that the drop in state errors at about 300 sec coincides with

acquisition of the satellite by a second tracking station. It is also noted

that the position and velocity estimation errors are largely in the x and y

components; the z component errors are quire small. This is simply due to the

station-satellite geometry. Thus from the first station, x, y, x and r are

not as observable as z and i are. This geometric observability clearly has

an impact on the estimation of Su as well; and also on the estimation of q.

q guarantees residuals consistent with a projection of the state covariance

matrix on the available measurement space; not on the unobservable subspace of

state space. This last observation was well evidenced in a simulation with

range rate measurements only. In that case, range rate residuals were just as

nice as in the present simulation, while state errors were not quite as good

during the first 300 sec of tracking. 4 compensated only for the state sub-

space it could see. This leads to the observation that while additional meas-

urement types (e.g. angles) may not enhance a standard estimation process

(e.g. batch), they may well enhance the J-A-i estimator.

The precision of tracking of the unmodeled acceleration can be improved

with more precise measurements. This can be seen in Figure 8, which shows the

x acceleration component estimate generated by the J-A-q estimator with

a. = 0.3m and a. = 0.1 cm/sec. Compare this with Figure 1.
P P

The J-A-U estimator was simulated on the case described above (a = 3m,

a. = 1 em/sec). This was easy to do once the J-A-j run was made; U was set
P

at the steady-state value of qI. Figure 9 shows the tracking of the x

acceleration component. Comparing this with Figure 1, improvement in tracking

is seen, although the J-A-U estimates definitely have deterministic oscillations

and are not as desirable from this point of view. Figure 10 shows that the

J-A-U estimator produces somewhat nicer measurement residuals than the J-A-q

estimator (compare with Figure 5). But a stand-alone J-A-U run would require

14



engineering the U statistics which would normally take several simulations.

In contrast to this, all J-A-i estimator runs are completely automatic, and are

untouched by human hand.

The next set of simulations to be described feature the J-A-4 estimator

with an improved dynamical model. In addition to the two-body term, the esti-

mator contains the J2 and J3 terms with approximate values of J2 and J3;

-3 2 -6 3
namely, J2 = 1.083 x 10 RE, J3 = -2.55 x 10 RE. The objective of these

simulations is to determine how well the estimator might identify the higher

order geopotential. Figure 11 shows the tracking of the z acceleration com-

ponent with a = 3m, a. = 1 cm/sec. It is observed that the lower accelera-
p p

tion levels cannot be tracked with such noisy measurements. However, Figures

12 and 13 show that the state is still estimated to the data precision; the

undetected accelerations are inconsequential relative to the overall noise

levels. Figure 14 shows the tracking of the z acceleration component with

a = 0.3m, o. = 0.1 cm/sec. Tracking is improved (compare with Figure 11),

but the extremely low unmodeled accelerations are still undetected. Things

of course look much better on a linear scale (see Figure 15). Tracking can be

further improved with a = 3 cm, a. = 0.01 cm/sec, as can be seen in Figure 16.
P p

When better instruments are developed we will show additional simulations.

The next simulations feature an unmodeled mascon. That is, the only model

error is due .to the mascon. As seen in Figure 17, the J-A-q estimator (unaided

by human hand) cannot track this extremely small unmodeled mascon acceleration.

As can be seen in Figure 18, however, a carefully engineered J-A-U estimator

does detect the mascon, albeit with some lag and overshoot which eventually

damps out. To accomplish this, however, we need a = 1 cm and a . = 0.01 cm/sec.
p p

Limited simulations were performed on a single station pass. This is the

first station of the earlier simulations (recall the earlier station-satellite

geometry discussion). The measurement noise standard deviations for range and

range rate are a = 3m, a. = 1 cm/sec, respectively. Table 1 summarizes

the position and velocity errors at the end of the pass for several cases.

First a standard extended Kalman filter run was made, where the filter model

was perfect (full oblateness). The lack of good observability in the x and y

15



coordinate directions is clearly seen in Table 1 (although it should be noted

that the filter was not iterated, either locally or globally; some small

improvement might be expected with iteration.) Next a totally uncompensated,

standard extended Kalman filter run was made, where the filter model contained

the two-body term and the J2 and J3 terms with the approximate values of

J2 and J3 used above. It is seen in Table 1 that this uncompensated filter

is diverging, as expected. A J-A-q estimator, with the two-body and the same

approximate J2 and J3 terms was completely unsuccessful (started to diverge).

This is due to the initial transient, discussed earlier, where the u estimates

are poor; the J-A-q estimator is not yet locked onto the unmodeled accelera-

tion. However, improved results are obtained (shown in the last line of Table 1),

when the estimated u is not used for prediction. This might be termed an

"adaptive consider mode" of the estimator. As seen in Table 1, these results

(third line) are comparable to the perfect model run (first line) in the x

and y coordinate directions. z-coordinate errors are larger, however; the

J-A-q adaptive consider mode filter is putting too much uncertainty in the

z-direction.

These single station pass simulations indicate that when observability is

marginal, automatic adaptive estimation is of questionable value. Great care

must be exercise in adding uncertainty to a selected subspace of the state space;

so as not to destroy the information content of the data.

16
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Table 1

SINGLE STATION PASS ERRORS

Position Errors (m) Velocity Errors (m/sec)

x-x y-y z-z x-x y-y. z-z

Perfect Model 146. -171. - 9.8 0.22 -0.24 0.003
Extended Kalman

Uncompensated 558. -646. -68.6 0.80 -0.95 -0.070
Extended Kalman

J - A - q 150. -118. -335. -0.69 -0.07 -1.34
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VI. NEW TECHNOLOGY

The work under this contract consisted of the development of recursive

estimation techniques for application to satellite orbit determination. The

previously developed J-Adaptive estimator was modified and extended to include

the geometry of random (unmodeled) accelerations, and the adaptive estimation

of noise statistics in a stochastic model for these accelerations. The

algorithms developed were tested by computer simulation on satellite orbit

problems with unmodeled earth oblateness and mascon accelerations of various

types.

The algorithm developed as a result of this effort is applicable to satel-

lite orbit determination when excellent, continuous tracking coverage is

available, as may be the case in satellite-to-satellite tracking.

Frequent reviews and a final survey for new technology were performed.

While the extensions to the J-Adaptive estimator developed represent new

mathematical techniques applicable to satellite orbit determination, it is

believed that they do not represent reportable or patentable items within the

meaning of the New Technology Clause.. Our reviews and final survey found no

other items which could be considered reportable items under the New Technology

Clause.
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VII. CONCLUSIONS AND RECOMMENDATIONS

Simulations demonstrate that the J-Adaptive estimator with estimated

noise statistics can automatically, without human intervention, and with a very

simple orbit model (e.g. two-body model), estimate satellite orbits to an

accuracy comparable with the data noise levels, when excellent, continuous

tracking coverage is available. Such tracking coverage may be available from

satellite-to-satellite tracking. The fact that a two-body model can be utilized

in the estimator prediction equation eliminates the need for numerical integra-

tion of the orbit dynamics equations, which in turn results in a very fast

(computational) orbit estimation algorithm.

This estimator also tracks (estimates) the unmodeled acceleration vector.

From these latter estimates a parametric model of the unmodeled accelerations

may be recovered. The precision of tracking of these unmodeled accelerations

is a function of the measurement noise levels (measurement precision). Every-

thing else being equal, the J-Adaptive estimator with a' priori "engineered"

unmodeled acceleration statistics can track the unmodeled accelerations with

higher precision than the estimator with estimated noise statistics. However,

to engineer these statistics requires trial runs and simulations.

In the absence of excellent tracking station coverage (single station pass),

the J-Adaptive estimator is unsuccessful; there is a relatively long transient

before the estimator locks onto the unmodeled acceleration. A consider version

of the estimator ("adaptive consider mode") shows some promise in this situation,

but further research is required in this area.

On the basis of study results, the following recommendations are made:

(1) The J-Adaptive estimator with estimated noise statistics should be

applied to the satellite-to-satellite tracking problem. Simulations

should be performed in this environment to verify estimator per-

formance. This is a very natural application because of the great

abundance of data.available. This abundance of data is precisely

where the J-Adaptive estimator is extremely efficient as opposed to

batch estimation methods.
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(2) The J-Adaptive estimator should be studied in an environment con-

taining more realistic measurement error models, including station

location errors, timing errors, and so on.

(3) The single station pass tracking situation should be investigated,

with a view, for example, to restricting uncertainties to selected

subspaces of the state space.

(4) Other measurement types (angles) should be incorporated in J-Adaptive

estimator studies. These may enhance the noise statistics estima-

tion, thus improving tracking performance.

(5) Finally, parametric model recovery from the unmodeled acceleration

estimates generated by the J-Adaptive estimator should be studied..
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Appendix A - Oblateness Model

A low order earth oblateness model utilized in the simulation studies is

given below. In the equations which follow, R = y,z T  is the satellite

earth-fixed position vector expressed in km; r = RI; p is the gravitational

parameter of the earth; J2,' 3 and J4 are zonal harmonic coefficients; C2 2 '

S2 2 , C3 1 , S3 1 , C3 3 , S3 3 are tesseral harmonic coefficients; and

e = 0 .e = 1 , e = 0 ]

Defining the acceleration terms

FJ 2 [ 5  2 R - 2zez
J2 2r5 z

FJ3 = 35 (Z 15] L 15 z2 3 ezJ

F 4 ([21 4 14 z2 + R + [4 - z ze)

2r

F31 = 7x Z (4z2- x2- y2) R + (4z2- y2- 3x2) e- 2xye + 8xye C3 1

+ 1Z (4z2- x2- y 2) R 2xye + (4z2- x2- 3y2) e + 8yze S- 2  Y

F33 = ( x 2 - 3y 2 ) R + 3 (x 2 - y 2 ) ex -6xye C

33 7 2y] 33
8r

+ (3x2 _ y2) R + 6xye +3 (x2- y 2) e 33)
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the acceleration due to oblateness, in earth-fixed coordinates and expressed
2

in km/sec is given by

AROE = FJ2 + FJ3 + F4 - F22 -31 - F33

Numerical values for the coefficients above are

1 = 3.986032 x 105 (km3/sec2 )

-3 2 2
J2 = 1.08265 x 10- 3 RE (km2 )

J3 = -2.546 x 10 RE (kinm )

J4 = -1.649 x 10 - 6  R (kmin4 )

-5 2 2
C2 2 = 0.1536 x 10- 5  (km2 )

-6 2 2
S2 2 = -0.872 x 10 RE (km )

-5 3 3C3 1 = 0.2091 x 10 RE (km)

-6 3 3
S = 0.287 x 10 R (kinm )31 E

-7 3 3C3 3 = 0.782 x 10 7  R (km )

33 = 0.226 x 10- 6 R (kin3 )

RE = 6378.1641 (km)
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